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The behaviour of fluid-particle acceleration in near-wall turbulent flows is investigated
in numerically simulated turbulent channel flows at low to moderate Reynolds
numbers, Reτ = 180 ∼ 600. The acceleration is decomposed into pressure-gradient
(irrotational) and viscous contributions (solenoidal acceleration) and the statistics
of each component are analysed. In near-wall turbulent flows, the probability
density function of acceleration is strongly dependent on the distance from the wall.
Unexpectedly, the intermittency of acceleration is strongest in the viscous sublayer,
where the acceleration flatness factor of O(100) is observed. It is shown that the
centripetal acceleration around coherent vortical structures is an important source
of the acceleration intermittency. We found sheet-like structures of strong solenoidal
accelerations near the wall, which are associated with the background shear modified
by the interaction between a streamwise vortex and the wall. We found that the
acceleration Kolmogorov constant is a linear function of y+ in the log layer. The
Reynolds number dependence of the acceleration statistics is investigated.
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1. Introduction
Lagrangian acceleration is one of the fundamental variables in the Navier–Stokes

equations and of great importance in understanding Lagrangian nature of turbulent
flows. The study on acceleration is relevant not only to theoretical developments (Hill
2002; Biferale et al. 2004; Yeung et al. 2007) but also to many engineering applications,
such as the prediction of near-surface dispersion of airborne pollutant (Sawford 1991;
Pope 1994; Reynolds 1999) and particle deposition onto a surface (Brooke et al. 1992;
Setyawan et al. 2002). Because of the Lagrangian nature, measurement of acceleration
is a challenging task and only quite recently have direct measurements of acceleration
become possible using optical imaging (La Porta et al. 2001). Due to developments of
experimental techniques and high-performance computing, fluid-particle acceleration
has been studied extensively over the last decade (see Toschi & Bodenschatz 2009 for
a review). Recently, acceleration of finite-sized and/or inertial particles has begun to
attract considerable attention (Qureshi et al. 2007; Volk et al. 2008; Calzavarnini et al.
2009; Yeo et al. 2010). Now, there is a large volume of literature on the behaviour
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of acceleration in isotropic turbulence and our understanding of acceleration in
isotropic turbulence is much more advanced than that in inhomogeneous turbulent
flows, such as turbulent shear layers. Still, there are only a limited number of studies
on the behaviour of acceleration in near-wall turbulence (Lee, Yeo & Choi 2004;
Gerashchenko et al. 2008; Yeo, Kim & Lee 2009).

Monin & Yaglom (1975) suggested that the Lagrangian acceleration is largely
determined by the smallest scale motion, smaller than the Kolmogorov scale, and
pressure forces mainly contribute to the acceleration at high Reynolds numbers.
Hill & Thoroddsen (1997) estimated the two-point correlation of acceleration from
the third- and fourth-order velocity structure functions to show that the viscous-force
contribution to acceleration is negligible compared to that of the pressure force.
Yeung (1997) found in the simulation of homogeneous shear flow that the one- and
two-particle correlations of acceleration exhibit an approximately isotropic behaviour,
which is consistent with the local isotropy.

According to the classical Kolmogorov similarity theory, the acceleration
Kolmogorov constant, acceleration variance scaled by ε and ν, is a universal constant
at sufficiently high Reynolds number. However, it is still not clear whether the
acceleration variance exhibits the universal behaviour at high Reynolds number.
Yeung & Pope (1989) found in the simulation of isotropic turbulence that the
acceleration Kolmogorov constant is not universal and rather increases as Reλ

1/2,
where Reλ denotes the Taylor-scale Reynolds number. Vedula & Yeung (1999)
suggested that the Reynolds number dependence comes from the non-universal
behaviour of pressure-gradient statistics. Gotoh & Rogallo (1999) proposed a
theoretical model which assumes that the small-scale pressure field is driven by
coherent structures to explain the Reynolds number dependence of acceleration
statistics. La Porta et al. (2001) showed that acceleration is highly intermittent in their
direct measurement of the Lagrangian acceleration in quasi-isotropic turbulence.
They claimed that the Kolmogorov scaling is attained at high Reλ. Yeung et al.
(2006) performed direct numerical simulations (DNS) of isotropic turbulence for
Reλ =40 ∼ 680 and suggested a fitting curve for the acceleration Kolmogorov constant.
Recently, Gulitski et al. (2007) measured acceleration variances for Reλ up to 104. They
showed that the acceleration Kolmogorov constant depends on Reλ even at Reλ ∼ 104

and the behaviour of the acceleration Kolmogorov constant is well predicted with the
fitting curve by Yeung et al. (2006).

The Navier–Stokes equations relate the Lagrangian acceleration to the Eulerian
variables (Monin & Yaglom 1975). The Lagrangian acceleration (a) is composed of
two contributions from the pressure-gradient and the viscous forces. Conventionally,
the pressure-gradient force is called potential or irrotational acceleration (aI ) and the
viscous force is solenoidal acceleration (aS), owing to their inherent characteristics
(Monin & Yaglom 1975; Vedula & Yeung 1999). It has been discussed in isotropic
turbulence that aI mainly contributes to a and the correlation between a and aS

becomes negligible as the Reynolds number increases (Hill & Thoroddsen 1997;
Tsinober, Vedula & Yeung 2001). In near-wall turbulence, however, the turbulent
field is highly anisotropic and the viscous effects become dominant in the vicinity
of the wall. Therefore, the behaviour of acceleration may be different from that in
isotropic turbulence.

The main purpose of this study is to investigate the behaviour of acceleration in
near-wall turbulent flow. Particularly, we focus on the connection between near-wall
coherent structures and acceleration. We performed DNS of turbulent channel flow
at low to moderate Reynolds number. We report various acceleration statistics which
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Reτ Nx × Ny × Nz �x+ �z+ �y+
min

180 192 × 129 × 192 11.8 3.93 0.05
408 192 × 193 × 192 13.1 4.36 0.05
600 320 × 257 × 320 11.8 3.93 0.05

Table 1. Simulation parameters. Nx × Ny × Nz are the number of modes and �x+, �y+

and �z+ are the numerical grid spacings normalized by the wall units in the streamwise,
wall-normal and spanwise directions, respectively.

have not been presented for near-wall turbulence. The different behaviours of a, aI

and aS around the coherent structures are illustrated.
The remainder of this paper is organized as follows: numerical methods are briefly

described in § 2; acceleration statistics are analysed in § 3; the behaviour of acceleration
near a coherent structure is presented in § 4; finally, the conclusions are provided
in § 5.

2. Numerical approach
The Navier–Stokes equations for incompressible flow are

∂ui

∂xi

= 0, (2.1)

Dui

Dt
= − ∂p

∂xi

+
1

Reτ

∇2ui, (2.2)

where x1, x2 and x3 denote the streamwise (x), wall-normal (y) and spanwise directions
(z), respectively. Here, the ui are the corresponding velocity components (u, v, w), p

is pressure and Reτ is the Reynolds number based on the channel half-width δ and
the wall-shear velocity uτ . All variables in (2.1) and (2.2) are non-dimensionalized by
δ and uτ .

The acceleration fields are computed by DNS of turbulent channel flow at
Reτ =180, 408 and 600. The Navier–Stokes equations were solved by using a spectral
method: dealiased Fourier and Chebyshev expansions are used in the horizontal
and the wall-normal directions, respectively. The time advancement was carried
out by employing the Crank–Nicolson scheme for the viscous terms and a third-
order Runge–Kutta scheme for the nonlinear terms (Lundbladh et al. 1999). Periodic
boundary conditions are used in the horizontal directions. The computational domain
size and the grid sizes in wall units are listed in table 1.

A 128 × 129 × 128 mesh has been used for DNS studies of turbulent channel flows
at Reτ = 180 and shown to be sufficient to resolve the velocity statistics (Moser, Kim &
Mansour 1999). However, as the fluid acceleration is highly intermittent, it may need
a finer resolution to estimate the acceleration statistics accurately. Figure 1 shows the
flatness factors of the spanwise acceleration Fz obtained for three different resolutions
at Reτ = 180. It is observed that Fz is slightly underestimated when using the usual
128 × 129 × 128 mesh. Therefore, we used a 192 × 129 × 192 mesh for Reτ =180 and
the mesh sizes for higher Reτ are determined to keep the same resolution in the wall
units.
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Figure 1. The flatness factors of the spanwise acceleration for different resolutions at Reτ =
180. Solid line, 128 × 129 × 128; dashed line, 192 × 129 × 192; dash-dot line, 256 × 129 × 258.
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Figure 2. Probability density functions of acceleration fluctuations in (a) viscous (y+ =7.8)
and (b) buffer layers (y+ = 30.3) at Reτ = 180. (c) and (d ) are, respectively, the p.d.f. of the
streamwise and wall-normal components of aI and aS at y+ = 7.8. All p.d.f.s are normalized
by standard deviations of the total accelerations, 〈a2

i 〉1/2. The dotted lines in (a)–(d ) are the
Gaussian distribution.

3. Acceleration statistics
3.1. Probability distribution of acceleration

The probability density functions (p.d.f.) for acceleration fluctuations at different wall-
normal distances for Reτ = 180 are shown in figure 2(a, b). Each p.d.f. is evaluated with
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about 3.7 × 108 samples and normalized by the root-mean-square (r.m.s.) accelerations
〈a′2

i 〉1/2, where 〈·〉 denotes ensemble average. Hereafter, we use lower-case characters
to indicate fluctuating components and upper-case characters for mean components,
unless mentioned otherwise. Consistently with the previous experiments (Voth et al.
2002) and DNS (Vedula & Yeung 1999) in isotropic turbulence, the acceleration
p.d.f.s show long tails compared to that of the Gaussian distribution. Near the wall,
the p.d.f.s of ax and ay are strongly skewed. The p.d.f. of ax at y+ = 7.8 is negatively
skewed whereas that of ay is positively skewed, in which the superscript + denotes
a variable normalized by the inner variables (uτ and ν). The p.d.f.s become nearly
symmetric at y+ = 30.3. As expected, the p.d.f. of az is always symmetric regardless
of the distance from the wall.

It is interesting to observe that the acceleration p.d.f.s in the viscous sublayer
(figure 2a) show wider tails than those in the buffer layer (figure 2b). In the p.d.f.
of ay at y+ = 7.8, extreme events, 50 times larger than the r.m.s. value, are observed
with the probability of 10−7. The maximum flatness factor of ay is about 280 at
y+ � 5 (figure 4c), which is much larger than the flatness factor observed in isotropic
turbulence; about 90 for Reλ =690 (La Porta et al. 2001; Voth et al. 2002).

Acceleration in isotropic turbulence is dominated by the potential contribution aI

(Monin & Yaglom 1975; Vedula & Yeung 1999; Tsinober et al. 2001). On the contrary,
in turbulent channel flow, it is expected that the viscous contribution aS is dominant
at least in the viscous sublayer. Figure 2(c, d ) shows the p.d.f.s of (aI

x , aS
x ) and (aI

y , aS
y )

at y+ = 7.8, respectively. All p.d.f.s are normalized by the r.m.s. value of the total
acceleration 〈a2

i 〉1/2. Interestingly, even in the wall region, accelerations larger than 10
r.m.s. values are mainly associated with aI . In the core of the p.d.f. (|aS |/〈a2〉1/2 � 5),
the probability density of aS

x is greater than aI
x . However, ay is determined mostly

by aI
y except in a very narrow region near the origin. It is somewhat surprising to

observe that aI is dominant even in the viscous sublayer.

3.2. One-point statistics

The mean streamwise Ax and wall-normal accelerations Ay normalized by the inner
variables for three different Reτ are shown in figure 3(a, b). The negative peak of
Ax appears at y+ � 7 regardless of Reτ . From the mean momentum equation for the
streamwise velocity,

Ax = −1 +
1

Reτ

d2U

dy2
, (3.1)

it is obvious that the negative peak of Ax is due to the viscous contribution. Since
the mean wall-normal velocity is zero, Ay is solely determined by the irrotational
acceleration. The peak Ay is observed at y+ � 20. Moser et al. (1999) have shown that
the Reynolds stresses scaled by the inner variables are insensitive to the Reynolds
number once Reτ � 400. Because Ax and Ay are, respectively, wall-normal gradients
of 〈uv〉 and 〈v2〉, Ax and Ay at Reτ = 408 are almost indistinguishable from those
at Reτ =600 for y+ � 100.

Figure 3(c, d ) shows the r.m.s. values of ax and ay scaled by the inner variables.
We compared the present results with the experimental data in Gerashchenko et al.
(2008) for the Reynolds number based on uτ and the boundary layer thickness
Reδ = 470. Because they measured acceleration of finite-sized inertial particles, it
is difficult to compare the results directly. However, considering the differences in
physical parameters, the qualitative agreement in the r.m.s. acceleration profiles is
quite satisfactory.
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Figure 3. Mean and r.m.s. accelerations normalized by uτ and δ: (a) mean streamwise
acceleration, (b) mean wall-normal acceleration, (c) r.m.s. streamwise acceleration and (d )
r.m.s. wall-normal acceleration in wall coordinates. �, experiments by Gerashchenko et al.
(2008).

In figure 3(c, d ), it is shown that the location of the peak 〈a2
x〉1/2 coincides with that

of Ax . Unlike the mean values, the r.m.s. accelerations are shown to be increasing
functions of Reτ . However, in the viscous sublayer y+ � 7, both the steamwise and
wall-normal accelerations are scaled well with the inner variables when Reτ � 408.
Except near the location of the peak Ai , the mean accelerations are very small
compared to their r.m.s. values. At the locations of peak Ax and Ay , 〈a2

x〉1/2/Ax > 2
and 〈a2

y〉1/2/Ay > 3, in the range of Reτ in the present simulations.
To investigate the behaviour in detail, we compute the r.m.s. values of total,

irrotational and solenoidal accelerations separately for Reτ =180 (figure 4a). The
peaks of ay and az appear in the buffer layer, where the distinguishing turbulent
coherent structure of near-wall turbulence, the streamwise vortex, is observed. On the
other hand, ax reaches its maximum very near the wall, y+ � 7. It is shown that aS

x

is responsible for the peak ax near the wall. The contribution of aS
x to ax is greater

than that of aI
x until y+ � 20 and the relative magnitude |aS

x |/|aI
x | decreases slowly

outwards. It is also found that 〈aS
y

2〉 and 〈aS
z

2〉 are negligibly small compared to their
irrotational counterparts.

The skewness factor of ay (Sy) is shown in figure 4(b). It is shown that Sy reaches
its positive peak at y+ � 7.8 and crosses zero at y+ � 20. This behaviour may suggest
the relation between acceleration and a turbulent coherent structure. Kim, Moin &
Moser (1987) have shown that the averaged centre of the streamwise vortices is
located at y+ � 20 with the averaged radius of r+ � 15. Because accelerations tend
to be directed towards the core of a vortex (Lee et al. 2004; Lee & Lee 2005), the
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irrotational and solenoidal accelerations scaled by the wall units, (b) skewness and (c) flatness
factors.

upward acceleration appearing below the vortex contributes to the positive Sy when
y+ < 20. Likewise, the negative Sy may be related to the downward acceleration
above the streamwise vortex.

The flatness factors are presented in figure 4(c). The flatness factors are evaluated
with about 4.7 × 109 samples to ensure convergence. The flatness factor of ay (Fy)
shows an extremely large peak in the viscous sublayer, larger than 280. The large Fy

in the wall-region is due to the long positive tail of the ay p.d.f. shown in figure 1(a).
A close investigation of flow fields reveals that the streamwise vortices are extended
from the buffer layer to the viscous sublayer causing very large upward acceleration
in the viscous sublayer, which contributes to the large Fy near the wall.
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Figure 5. (a) The acceleration variance normalized by the Heisenberg–Yaglom scaling a0 and
(b) Taylor-scale Reynolds number Reλ as function of y+ for three different Reτ . (c) a0 as
a function of Reλ: �, Reτ = 408; �, Reτ = 600; ×, Vedula & Yeung (1999); �, Lüthi et al.
(2005); �, Voth et al. (2002); ———, Yeung et al. (2006).

3.3. Reynolds number dependence of acceleration statistics

The acceleration variance normalized by the Heisenberg–Yaglom scaling (Monin &
Yaglom 1975) is defined as

a0 ≡ 1

3

〈a · a〉
ε3/2ν−1/2

, (3.2)

in which ε is the dissipation rate. Figure 5(a) shows a0 as a function of y+. It is
shown that a0 is a non-decreasing function of Reτ near the wall. In the viscous
sublayer (y+ � 10), a0 collapses well for the two-higher Reτ due to the universal
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characteristic of the solenoidal acceleration (Vedula & Yeung 1999). Interestingly,
a0 is a linear function of y+ in the log layer for Reτ � 408. The fitting curves
are a0 = 1.20 + 3.78 × 10−3y+ and a0 = 1.64 + 1.63 × 10−3y+ for Reτ = 408 and 600,
respectively. The slope of the fitting curve decreases significantly as Reτ increases.

To compare a0 with the previous results for isotropic turbulence, we estimate the
Taylor-scale Reynolds number as a function of y+. The Taylor-scale Reynolds number

in inhomogeneous turbulence is estimated by Reλ = (20k+2
/3ε+)1/2, in which k+ is the

turbulent kinetic energy scaled by the inner variables. Figure 5(b) shows Reλ profiles
for different Reτ . For Reτ =180, Reλ shows a local peak in the buffer layer and slowly
decreases afterwards. On the other hand, plateaus are observed in the log layer at
Reτ =408 and 600.

In figure 5(c), we compare a0 at the plateaus for Reτ = 408 and 600 with the
previous numerical (Vedula & Yeung 1999) and experimental results (Voth et al.
2002; Lüthi, Tsinober & Kinzelbach 2005). In the experiments by Voth et al. (2002),
a0 for axial and lateral accelerations do not coincide at low Reλ. In figure 5(c), we
show the average of the axial and lateral a0. The results by Vedula & Yeung (1999)
is obtained from Gylfason, Ayyalasomayajula & Warhaft (2004). According to the
classical Kolmogorov scaling, a0 may show a universal behaviour at sufficiently high
a0. However, it has been observed that a0 shows a Reynolds number dependence even
at Reλ ∼ 104 (Gulitski et al. 2007). Yeung et al. (2006) provided an empirical fitting
curve for a0,

a0 =
1.3

Re0.22
λ

+ 0.88Re0.66
λ ln

(
Reλ
20

)
. (3.3)

It is interesting to observe that a0 estimated at the plateau of Reλ shows a good
agreement with the previous results in isotropic turbulence. From figure 5(a, b), it
seems that, at higher Reτ , there will be a region in which both Reλ and a0 reach
plateaus and a0 may be estimated from the data in isotropic turbulence.

Figure 6(a, b) shows the ay skewness and flatness factors for three different Reτ .
In isotropic turbulence, it has been shown that the acceleration flatness factor is an
increasing function of Reλ. In the DNS study of Yeung et al. (2006), the acceleration
flatness factor increases from 7 at Reλ = 7 to 107 at Reλ = 680. On the contrary,
it is found that, near the wall (10 < y+ < 100), the acceleration skewness and
flatness factors are relatively less sensitive to the Reynolds numbers except in the
viscous sublayer. In the viscous sublayer, both the skewness and flatness factors are
increasing functions of Reτ .

4. Behaviour of accelerations around vortices
4.1. Alignment of accelerations with vortices

In a vortex, pressure has its local minimum on the axis of the swirling motion
because the centrifugal force is balanced by pressure gradient (Jeong et al. 1997).
As the major contribution to acceleration comes from the pressure gradient, it is
natural that acceleration is directed towards the core of a vortex. A strong correlation
between a streamwise vortex and pressure gradient was first noticed by Kim (1989)
in turbulent channel flow, in which he found elongated structures of ∂p/∂y and
∂p/∂z in the streamwise direction and a strong correlation between ∂p/∂z and
streamwise vorticity at the wall. By investigating the acceleration–enstrophy cross-
correlation function in isotropic turbulence, Yeung & Pope (1989) suggested that
the fluid particles are accelerated towards regions of high vorticity. La Porta et al.
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Figure 6. Acceleration (a) skewness and (b) flatness factors for three different Reτ .

(2001) observed that intermittent accelerations are associated with spiral motion of
fluid particles around vortices. Based on the results, Mordant et al. (2002) suggested
that the slowly decaying Lagrangian correlation of acceleration magnitude is closely
associated with the intermittency. Later, Lee et al. (2004) confirmed that the long-time
correlation of acceleration magnitude is due to the centripetal acceleration of fluid
particles trapped in a vortex.

To investigate the behaviour of acceleration near vortices quantitatively, we
investigate the angles between accelerations and the gradient of squared vorticity
known as the enstrophy ω · ω, in which ω is the fluctuating component of vorticity.
We define the angle between a and ∇(ω · ω) as

α = cos−1

(
a · ∇(ω · ω)

| a|| ∇(ω · ω)|

)
. (4.1)

A region of high ω · ω is strongly correlated with solid-body rotation of fluid and,
hence, vortex tubes (Ruetsch & Maxey 1992; Blackburn, Mansour & Cantwell 1996).
Since, near a vortex tube, ω · ω has a local maximum along the axis of the vortex and
decreases radially, ∇(ω · ω) is perpendicular to the vortex axis.

Figure 7(a, b) illustrates the p.d.f.s of α, P (α). In the viscous sublayer, P (α), P (αI )
and P (αS) show peaks around 90◦. Because the direction of irrotational acceleration
near a vortex converges into the core of the vortex, the peak of P (αI ) at 90◦ is
not an expected result. Even in the buffer layer (figure 7b), P (αI ) does not show a
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results are obtained at Reτ = 180.

preferential alignment with the enstrophy gradient. P (α) has a weak peak at α = 90◦

in the buffer layer. aS is perpendicular to the enstrophy gradient regardless of the
distances from the wall. The weak peak of P (α) observed in the buffer layer seems to
be associated with the non-negligible contribution of aS

x to 〈a2
x〉1/2 (figure 4a).

The intermittent accelerations, more than 20 times larger than r.m.s. acceleration,
are typically observed around vortical structures (Lee et al. 2004; Lee & Lee 2005). To
consider the intermittent events, we computed the conditional acceleration variances,
µ2(a|α) = 〈(a · a)|α〉. Figure 7(c, d ) shows that the large-magnitude events of a and
aI are always aligned with the enstrophy gradient, implying that a major source of
the intermittently large accelerations is centripetal accelerations near vortices. On
the other hand, µ2(a

S |αS) shows a peak at αS = 90◦ regardless of the wall distances.
This behaviour of the solenoidal acceleration is explained in § 4.2. It is also observed
that the acceleration events of magnitudes similar to the mean accelerations show no
directional preference to the enstrophy gradient.

4.2. Acceleration fields near the wall

Figure 8(a–c) shows acceleration fields near a streamwise vortex rotating clockwise.
The vortex structure is identified by the λ2 method proposed by Jeong & Hussain
(1995). It is shown that (ay, az) are almost indistinguishable from (aI

y , a
I
z ), while

there are some differences in the x-components (contours) due to non-negligible
contribution of aS

x to ax . In figure 8(a), large positive and negative ax are observed
above and below the vortex, respectively. aS rotates around the vortex in the counter-
clockwise direction while the vortex rotates clockwise (figure 8c). Note that the
magnitude of the reference vectors in figure 8(c) is different from figure 8(a, b),
because the magnitudes of (aS

y , aS
z ) are much smaller than the total and irrotational

accelerations. From the Navier–Stokes equations, the relation between solenoidal
acceleration and vorticity is given by

∇ × aS = ν∇2ω. (4.2)
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Figure 8. (a–c) Display of a, aI and aS fields around a vortex structure. Solid line denotes the
boundary of a streamwise vortex rotating clockwise. Shading shows the streamwise components
of each acceleration. (d ) Root-mean-square values of ν∂2u/∂x2

i . (e) High- and low-speed streaks
and ωz field around a streamwise vortex in buffer layer. Grey shading denotes ωz. The solid
and dashed lines represent positive and negative u, respectively.

In a simple one-dimensional vortex tube, the vorticity has a local maximum along
the axis and decreases radially and the sign of the right-hand side of (4.2) is always
opposite to the sign of ω. Hence, it can be deduced that aS

y and aS
z always counter-

rotate with respect to the motion of the streamwise vortex. Because of the counter-
rotating nature of aS , the p.d.f.s of the angle between aS and ∇(ω · ω) show a peak at
αs =90◦ (figure 7a, b).

It is seen in figure 8 that the positive ax above a vortex resembles aI
x while the

negative one below the vortex is determined by aS
x . The positive and negative aI

x ,
displayed in figure 8(b), are induced by the streamwise vortex which is inclined in
the wall-normal direction (Lee et al. 2004). Typically, the large negative aS

x occurs
below the vortex, forming a sheet-like structure (figure 8c). It seems that the sheet-like
structure contributes to the peak r.m.s. aS

x found in the viscous sublayer (figure 3a).
It is noteworthy to observe that the magnitude of aS

x under the streamwise vortex is
about 150 while AS

x is about 10 in this region. aS
x consists of three components,

aS
x = ν

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (4.3)

Root-mean-square values of each component are presented in figure 8(d ) showing
that ∂2u/∂y2 is a major source of aS

x near the wall. Furthermore, |∂v/∂x| 
 |∂u/∂y|,
near the streamwise vortex. Hence, near the vortex, aS

x may be approximated by
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∂ωz/∂y. Jeong et al. (1997) have shown that high- and low-shear regions result
from the streamwise vortex near the wall and ωz changes its sign in the high-shear
region. Figure 8(e) shows the distribution of ωz near the streamwise vortex rotating
clockwise. Below the vortex, there is a region in which ωz changes rapidly from
positive to negative and the region coincides with the location of a high-speed streak.
Comparing figures 8(c) and 8(e), it seems that the sheet-like structure of aS

x in the
viscous sublayer is induced by the large ∂ωz/∂y below the streamwise vortex. The
peak of r.m.s. aS

x in the viscous sublayer is a consequence of the shear zone induced
by the streamwise vortex.

5. Conclusions
To investigate the characteristics of acceleration in near-wall turbulent flows, DNS

of turbulent channel flow were performed at Reτ =180, 408 and 600. The fluid-particle
acceleration is evaluated by summing the pressure-gradient (irrotational acceleration)
and viscous forces (solenoidal acceleration).

It is shown that the acceleration field becomes more intermittent near the wall.
Particularly, the p.d.f. of the wall-normal acceleration in the viscous sublayer shows
extreme events, ay � 50〈a2

y〉1/2, with the probability of 10−7. In the viscous layer, the ay

flatness factor becomes O(100). It is shown that such an intermittent event is governed
by the irrotational acceleration, which is linked to vortical structures. The acceleration
variances conditioned on the angle between the acceleration and the enstrophy
gradient indicate that a vortex structure is an important source of the acceleration
intermittency even in the viscous sublayer. In the viscous sublayer, the unconditioned
low-order statistics, such as mean and variances, of a are largely due to aS , while
intermittent events mainly come from the irrotational accelerations associated with
streamwise vortices in the buffer layer. It is shown that, unlike the previous results in
isotropic turbulence, the acceleration flatness and skewness factors are not sensitive
to Reτ in the buffer and log layers (10 < y+ < 100).

In isotropic turbulence, aS is negligible compared to aI . However, in near-wall
turbulence, the contribution from the steamwise solenoidal acceleration is non-
negligible at least in the low-order statistics of ax , while ay and az are governed
by the irrotational accelerations. Visualization of acceleration fields near a vortex
shows that aI is directed towards the core of a vortex while aS counter-rotates
with respect to the motion of the vortex. It is found that the streamwise vortex is
responsible not only for the intermittent characteristics of irrotational acceleration
but also for the large streamwise solenoidal accelerations observed in the viscous
sublayer. Below a streamwise vortex, there is a high-shear region in which a steep
gradient of the spanwise vorticity |∂ωz/∂y| is observed. The sheet-like structure of
strong negative aS

x is induced by the large |∂ωz/∂y|. The magnitude of aS
x in this

region is comparable to aI
x in the viscous layer. It is interesting to observe that the

location of the large negative aS
x coincides with the location of a high-speed streak,

indicating that the solenoidal acceleration acts to decelerate high-momentum fluid
from the buffer layer to the viscous layer by the sweep events.

The Reynolds number behaviour of the acceleration Kolmogorov constant a0 is
investigated. It is found that a0 is a linear function of y+ in the log layer when
Reτ � 408. The slope of the fitting curve is a decreasing function of Reτ , implying
that at sufficiently high Reτ there may be a region in the log layer in which a0 is a
constant. The Taylor-scale Reynolds number reaches a plateau in the log layer for



418 K. Yeo, B.-G. Kim and C. Lee

Reτ � 408. The value of a0 in the plateau is compared with the previous numerical
and experimental data in isotropic turbulence.
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